Fate of Alpha Dynamos at Large Rm.
نویسندگان
چکیده
At the heart of today's solar magnetic field evolution models lies the alpha dynamo description. In this work, we investigate the fate of alpha dynamos as the magnetic Reynolds number Rm is increased. Using Floquet theory, we are able to precisely quantify mean-field effects like the alpha and beta effect (i) by rigorously distinguishing dynamo modes that involve large-scale components from the ones that only involve small scales, and by (ii) providing a way to investigate arbitrary large-scale separations with minimal computational cost. We apply this framework to helical and nonhelical flows as well as to random flows with short correlation time. Our results determine that the alpha description is valid for Rm smaller than a critical value Rm_{c} at which small-scale dynamo instability starts. When Rm is above Rm_{c}, the dynamo ceases to follow the mean-field description and the growth rate of the large-scale modes becomes independent of the scale separation, while the energy in the large-scale modes is inversely proportional to the square of the scale separation. The results in this second regime do not depend on the presence of helicity. Thus, alpha-type modeling for solar and stellar models needs to be reevaluated and new directions for mean-field modeling are proposed.
منابع مشابه
The fate of alpha dynamos at large Rm
At the heart of today’s solar magnetic field evolution models lies the alpha dynamo description. In this work, we investigate the fate of alpha-dynamos as the magnetic Reynolds number Rm is increased. Using Floquet theory, we are able to precisely quantify mean field effects like the alpha and beta effect (i) by rigorously distinguishing dynamo modes that involve large scale components from the...
متن کاملAstrophysical magnetic fields and nonlinear dynamo theory
The current understanding of astrophysical magnetic fields is reviewed with particular emphasis on nonlinear dynamo theory. Analytic and numerical results are discussed both for small scale dynamos, where helicity is unimportant, and for large scale dynamos, where kinetic helicity is crucial. Large scale dynamos produce small scale magnetic helicity as a waste product that quenches the large sc...
متن کاملSuppressed fluctuations in non-stretched-twist-fold turbulent helical dynamos
Suppression of fluctuations of normally perturbed magnetic fields in dynamo waves and slow dynamos along curved (folded), torsioned (twisted) and non-stretched, diffusive filaments are obtained. This form of fluctuations suppression has been recently obtained by Vainshtein et al [PRE 56, (1997)] in nonlinear ABC and stretch-twist-fold (STF) dynamos by using a magnetic Reynolds number of the ord...
متن کاملNonlinear current helicity fluxes in turbulent dynamos and alpha quenching.
Large scale dynamos produce small scale current helicity as a waste product that quenches the large scale dynamo process (alpha effect). This quenching can be catastrophic (i.e., intensify with magnetic Reynolds number) unless one has fluxes of small scale magnetic (or current) helicity out of the system. We derive the form of helicity fluxes in turbulent dynamos, taking also into account the n...
متن کاملHyperdiffusion in nonlinear large- and small-scale turbulent dynamos.
The generation of large-scale magnetic fields is generically accompanied by the more rapid growth of small-scale fields. The growing Lorentz force due to these fields backreacts on the turbulence to saturate the mean-field and small-scale dynamos. For the mean-field dynamo, in a quasilinear treatment of this saturation, it is generally thought that, while the alpha effect gets renormalized and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 117 20 شماره
صفحات -
تاریخ انتشار 2016